
Volume 232, number 3 PHYSICS LETTERS B 7 December 1989 

A N O N L O C A L  M O D E L  O F  C H I R A L  D Y N A M I C S  

B. H O L D O M ,  J. T E R N I N G  and K. VERBEEK 
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S IA 7 

Received 14 August 1989; revised manuscript received 10 October 1989 

We consider a noniocal generalization of the nonlinear a model. Our chirally symmetric model couples quarks with self-energy 
Z(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite 
integrals of Z'(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay 
constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on ,Y(p). 

We wish to consider  a s imple model  o f  quarks with a nonlocal  and  nonl inear  coupling to a Golds tone  boson 
( G B )  field. We hope to capture  more  o f  the physics o f  chiral  symmet ry  breaking in gauge theories than does a 
s tandard  nonl inear  s igma model  with the following G B - q u a r k  coupling: 

my(x) V(x)~(x), V(x)-exp[ - 2 i n ( x ) y s / f ~ ]  . (1)  

Our  model  consists of  N flavors o f  quarks each with Arc "colors"  interacting with a GB field via a bilocal coupling: 

ZP~,(x, y) =@(x)6(x-y)~g(y) + ~(x)Y,,~(x, y)~(y) . (2)  

S~ is a nonl inear  function,  to be de te rmined ,  of  the GB field n ( x )  - ZaAana(X) [2a are generators  o f  S U ( N ) ,  
Tr ~.a,~b= ½t~ab]. ~n is a nontr iv ia l  mat r ix  only in the S U ( N ) L ×  SU(N)R  flavor space. We shall require that  n ( x )  
t ransforms under  chiral  t ransformat ions  in the s tandard  nonl inear  manner ,  and that  Z~ t ransforms in such a 
way that  SU (N)L × SU (N)R is a global symmetry.  The model  also has a vector  U (Arc) "co lor"  symmetry,  but  
we leave this ungauged. We will work in eucl idean space. 

We are considering a bi local  coupling since for vanishing n we shall require that  Z,,(x, y)~Z(x-y)di~ (i,j= 1, 
.... N) .  S ( x - y )  is the Four ie r  t ransform of  the quark self-energy Z(p), a function o f p  2. In a gauge theory with 
zero bare  mass quarks the dynamica l  self-energy S(p) is the order  pa ramete r  of  chiral  symmetry  breaking.  The 
appearance  of Z ( x - y )  in our  model  allows us to input  a realistic self-energy as would be de te rmined  for exam- 
ple by some approx ima t ion  to the gap equat ion in a gauge theory. In contrast ,  a local s igma model  with fermions 
has S ( x - y ) o c d ( x - y )  and  Z(p)=constant; this is not  representat ive  o f  a dynamica l  mass in a gauge theory. 
Since we use Z(x -y )  to represent  an order  parameter ,  it is then natural  that  the Golds tone  fields appear  as 
f luctuat ions in the or ien ta t ion  of Z (x -y )  in S U ( N ) L ×  SU(N)R.  

The s ta tement  that  GBs should appear  as " f luctuat ions  o f  the order  pa ramete r "  will define our  model.  It is 
equivalent  to insist ing that  @(x)Z,~(x, y)g(y) should reduce to ( 1 ) in the special case that  Z(x -y )  = rod(x-y). 
This is a nontr iv ia l  restr ict ion since var ious  der ivat ive  couplings are also allowed in a local nonl inear  sigma 
model;  we in tent ional ly  omi t  the nonlocal  general izat ions of  all such terms. 

The GB kinetic terms and self-couplings will be generated dynamical ly.  In fact we will integrate out  the quark 
fields and show that  a der ivat ive  expans ion  yields a local chiral  lagrangian for the GBs: 

exp(-  f d4x ~fr( n(x) ) )=- ~ ~ ~ exp( -  ~ d4x d4y ~,(x, y) ) , (3)  
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f d4x ~°eff(~Z(X ) ) = - t r  log ST l , (4) 

s ;  1 (x, y) --~x,~(x-y)  + S , (x ,  y). (5) 

We will express the coefficients of the various terms in the chiral lagrangian as finite integrals involving Z(p).  
In particular we obtain an expression for f~, the GB decay constant, and we reproduce the known coefficient of 
the Wess-Zumino term. 

We also consider other four derivative terms of interest for pion-pion scattering and skyrmion solutions. 
Other authors have obtained the Wess-Zumino term and other four derivative terms in various one fermion- 
loop calculations in local models [ 1 ]. But these models are unable to address the two derivative terms, ie. the 
calculation off~. Other nonlocal precursors of  chiral lagrangians have also been considered [ 2 ]. 

Different gauge theories with various particle contents will yield differing Z(p).  For example walking techni- 
color theories are constructed to yield a 27(p) which falls more slowly than in QCD. Our model may be useful in 
indicating how physical low energy quantities depend on the behavior of Z(p).  

We must first determine Z~(x, y). ( 1 ) implies that a global S U ( N ) L X S U ( N ) R  rotation of V(x) gives the 
standard nonlinear transformation law for n(x) .  We will thus construct Z~(x, y) from V(x) and V(y) so as to 
ensure global chiral invariance. Also, hermiticity requires that Z~ (x, y) = Z~ (y, x).  

We will consider the following form for Z ,  (x, y): 

Z ~ ( x , y ) = Z ( x - y ) T . ½ { [ a V ( x ) + b V ( x ) V ( y ) t V ( x ) + c V ( x ) V ( y ) t V ( x ) V ( y ) * V ( x ) + . . . ] + [ x , - ~ y ] } .  (6) 

T is some function, symmetric in x and y, of traces of  strings of  ... V(x) V(y)*... or ...V(y) V(x)*... such that 
T( V= 1 ) = 1. The constants satisfy 

a+b+c+ . . . .  1. (7) 

The single GB terms in Z ,  (x, y) are completely specified in (6): 

X,,(x, y) = Z ( x - y ) {  1 -i75 [n(x)  + n ( y )  ]/f,~ + (higher order in ~)}.  (8) 

The higher order terms in (8) are constrained but are not completely determined. This arbitrariness in the 
multi-GB couplings will have implications below. But (8) does determine the vertex function for a single GB of 
momentum q coupling to a quark and antiquark: 

G,~a(P, P+ q) =i~a~5 [Z(p+q) + Z(p)  ]/f~. (9) 

We may relate this result to chiral symmetry breaking in a gauge theory by recalling the WT identity for the 
axial current vertex function Fga: 

-iquF~a(p , p + q ) =Si- t (p + q )2a75 "[-,~,a75S~ l ( p  ) . (10) 

Sf(p) is the full quark propagator, Sf(p) =- {Z(p) [ - ig + Z(p)  ] } - 1. The presence of Z(p )  signal chiral symmetry 
breaking; it implies that Fga contains a term with a pole in q2. This pole may be identified with a GB with axial 
current coupling ( 0 [ Jg,, 1 lrb (q))  -- -- q ufnt~ab. Then (10) constrains the GB coupling to quarks. In the approxi- 
mation where Z(p) = 1 and where the nonpole part of Fga is Pga (P, P+q) =2~Yu~'s then (10) implies the same 
GB vertex function as in (9). 

This approximation coincides with the "dynamical perturbation theory" of Pagels and Stokar [ 3 ]. In lowest 
order all amplitudes which do not vanish in perturbation theory (in the gauge coupling) are set to their free field 
values. Amplitudes with vanish in perturbation theory but which nevertheless arise dynamically, such as Z(p),  
are retained. The result is again Z (p) = 1 and Pga (P, P + q) = 2 a~/~)5" This may not be a bad approximation if the 
actual momentum dependence of Z(p) and P ~  (p, p + q) can be neglected over the momentum range relevant 
to our final results. 

We may consider the WT identity in our model analogous to the one in (10). At tree order it reads 
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-iq/,F~a(p, p + q ) = S -  ' (p-l- q ),~a~5 + J .aysS -  i (p  ) + ifnGna(p, p + q ) . ( 1 1 ) 

The right-hand side reduces to -iquAaYU75 as expected. 
We now proceed to derive the effective chiral lagrangian. The transformation properties of zc(x) and chiral 

symmetry will ensure that LP~ff(Tr) is a function of U(x) =-exp[ -2i~r(x)/f,~]. We expand - t r  log S~ 1 in powers 
of ~r by writing 

- t r  log S~ -I = - t r  log S-1 - t r  log [ O ( x - y )  + $527(x, y) ] ,  (12) 

where S - ( x - y ) = ~ ( x - y ) + S ( x - y )  and 5Z(x, y)=Z,~(x, y ) - Z ( x - y ) .  Expanding the log gives a quark 
loop with any number of insertions of 527, the multi-GB vertex function. This may be transformed to momentum 
space and expanded in powers of the momenta associated with the various external z~ fields. We may integrate 
over the loop momentum and then convert the result to a local lagrangian density with terms having arbitrary 
numbers of derivatives and GB fields. We have in the end a derivative expansion of the original nonlocal theory. 

We first check that no GB mass appears in L~fr(r~). The relevant diagrams are in fig. (1) and their sum 
vanishes at p 2 = 0. We next require the standard normalization for the kinetic term, 10UTra (X) Ourg a ( X ). We extract 
the p2 piece from the diagrams in fig. 1 and denote the coefficient of ½P2nana as F(p 2). F(p 2) is proportional to 
f~-2 and so the constraint F(0)  = 1 yields a formula forf~ [_r' (q) -d~(q) /dqZ],  

N¢ fdq2qZ27(q ) (S (q)  lq227,(q) CI , (q)+lq:S , , (q)"  I 
f ~ -  (2n)2 \ [q2+27(q)Z]~ - q2+27(q)2 j .  (13) 

This integral converges for any reasonable Z'(p), as would emerge from a gap equation in a gauge theory. C is 
an arbitrary constant which depends on the coefficients in (6). For example, when a = 1, b, c . . . . .  0 and T= 1, 
then C=  1. Unless C vanishes, our result differs from the Pagels-Stokar (PS) result [ 3 ]. 

To show where the discrepancy arises we note that PS determine f ,  from the amplitude for annihilation of a 
GB by an axial current. For this they use the diagram in fig. 2 where they use eq. (9) for the GB vertex and 
2aTUy5 for the axial current vertex. But our model allows us to identify additional GB dependent contributions 
to the axial current. This may be seen in the derivation of the appropriate axial WT identity. Under a local chiral 
transformation the change in the lagrangian consists of the usual divergence of the local axial current as well as 
a nonlocal, GB dependent, 7 u independent contribution. The result is an identity which is pictured to lowest 
loop order in fig. 3. 

This identity relates the two different methods for calculatingf,. The right hand side is if. times the inverse 
GB propagator as obtained from the diagrams in fig. 1. The left hand side is the amplitude for the divergence of 
the axial current to annihilate a GB. The vertex in the second term is due to the additional contribution to the 
axial current. This term gives the additional term in our result forf,. That is, the PS method may be used in our 
model to calculatef~ only if this contribution is taken into account. 

Is there a choice of parameters in our model for which the extra contribution to the axial current vanishes? 
We find that the answer is no, although it is possible to choose the parameters such that the extra diagram 
contributing to f ,  vanishes. It is only then that C= 0 is recovered. 

We have already noted that our model incorporates the same quark propagator and the same single GB vertex 
function as found in the PS analysis. Even so, we have found that chiral symmetry has not been sufficient to 

@ (  .... @ .... 

Fig. 1. Two GB contribution to LP~fr(n(x) ). 

i 

Fig. 2. Pagels-Stokar contribution tof~. 
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J_t i • 

i i 

Fig. 3. Ward-Takahashi identity relating two methods for calcu- 
latingf~. 

Fig. 4. Five GB contribution to the Wess-Zumino term. 

uniquely determine f~. We have traced the apparent uniqueness of  the PS result to the omission of a certain 
vertex which should, by chiral symmetry, be present in lowest order dynamical perturbation theory. 

We next consider the Wess-Zumino term. (Here we assume that there are more than two flavors of quarks). 
For example we find that the five GB piece of the Wess-Zumino term appears in the five GB term in the deriv- 
ative expansion. It only receives a contribution from the diagram in fig. 4 and thus it does not depend on the 
multi-GB couplings. We find the following: 

~,awz = 5rcEfs~8Nc Tr(~,a~.b~.c).d),e)E~wx(O#7~a) (Oultb) (0,7~c) (01¢7~d)7~ e ~ dq 2 qE~'(q)4 ~'(q)E[qE+~.(q)2 ] s2qE~y'(q)'F' (q) . (14) 

Here the functional derivative with respect to Z(q)  turns out to vanish and we find that the value of the integral 
is i for any nonzero Z(q) for which the integral converges. Thus the apparent dependence on Z(q) is illusory 
and our model generates the correct coefficient of  the Wess-Zumino term. 

We may also consider higher derivative terms involving eu,~. Such terms in the chiral lagrangian are con- 
structed from U(x) and are not "anomalous" in any way. We obtain from fig. 4 the following expression, where 
F(pi, P2, P3, P4) replaces the integral in ( 14): 

EuW'CP|,uPEvP3~P4~F(Pl, P2, P3, P4) 

1 2 f .  t a v z K  
------ ~-g ~ dq 2 q {quPlvP2~P3,c[ --X(Z4) q"X(Z3) ] +q,uPlvP2rP4K[Z(Z3) --,~"(Z2) ] 

+quP~,,P3~P4~:[ --Y'(z2) +Z(Zl ) l +quP2,,P3~P4,,[.S(zx ) --.S(q) ] +PluP2,,P3~P4,¢Z(q)} 

X [,~(Z 1 ) "[- ,~(q) ] I S ( Z 2 )  ~I-S(ZI ) ] [ ,~(Z3) "[-,~(Z2) l [ '~(Z4)  "~'~(Z3) ] [Z(q)  +,S(z4) ] 

X [A(q)A(zl )A(z2)A(z3)A (z4) ] - l  , ( 15 ) 

where zl - -q -p i ,  z2 - -q -p l -P2 ,  z3 - -q -P l -P2-P3 ,  z4-~q-Pl-,02-/73-/04, and/ t (q  2) --= q2 q_~'(q)2. This deter- 
mines the five GB amplitude involving ~u,,~ to all orders in momenta. 

We now turn to other four derivative terms in the chiral lagrangian. The four derivative four GB terms are 
determined by the diagrams in fig. 5. When all four momenta are nonzero these diagrams contribute to terms of 
the form 

I 

i 
t i ,, 

Fig. 5. Four GB contribution to ..~ff(n(x) ). 
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[fl, Tr(OZn 0 J t  0~n 0~n) +f12 Tr(3 ~'~ 8~n 3uzt 3~n) ] / f 4 .  (16) 

We would like to give some idea of how fl~ and,82 may change when one goes from the case X(p) = m, a constant, 
to a more realistic X(p).  To do this we calculate ,8~ and ,82 for a particular set of  coefficients in (6): a =  1, b, c, 
. . . .  0 and T =  1. The resulting integral expressions for,81 and,82 are too lengthy to be reproduced here. 

In the chiral lagrangian there are three independent terms which make contributions to ,81 and ,82: 

LP40= Bt Tr(0uU * 0 r U 0~U * 0~ U) +B2 Tr(0uU * O~U0u U* 0~ U) +B3 Tr(02U * 02U) • (17) 

The B3 term contains the term ,83 Tr 02x 02zr/f 2. This in turn is determined by the p4 piece of the two GB dia- 
grams in fig. 1. With this the Bi's are determined: B t = ~6,8x --  ~,83, B 2 =  ~6fl2, B3= ~,83. In Minkowski space all the 
four derivative coefficients pick up an extra minus sign. 

In the X(p) = m  case we obtain,81m =0,  ,82m = - N o / 1 2 n  2, ,83m= - Nc/24z~ 2. In the case of  SU(2)  X SU(2)  we 
may write the,8~ and f12 terms in (16) as 

[ OLI OPga Oft 7~a OVgb Ov ~b + 012 O'U~a OV~a O,u 7~b Ov 7~b ] / f  ~, (18) 

where or1 = 1 (,81 -,82) and or2 = ],82. Then these values for ,stm and fl2m may be seen to agree with, for example, 
eq. (2.4) (with [ 3 x = 0 )  ofref. [4]. Similarly the,83m result gives ( - N c / 4 8 n z f  4 ) Ozzta O2Zta; this also agrees. 

Also in the SU (2) X SU (2) case we may quote values [ 5 ] extracted from experiment; renormalized at 0.5 
GeV they read ot~ x°t = -0 .010,  ot~ xvt =0.0075. This may be compared to 19/I = -0.0032,  ot2= 0.0063 for the case 
X(p)  =m. 

A more realistic choice for X(p)  is motivated by properties of  solutions to a gauge theory gap equation. Quite 
generally, .S(p) is a monotonically decreasing function o fp  which is finite at p = 0 and which for large p falls like 
1/p2 times a power of logp 2. We may neglect the log since our expressions are quite insensitive to the large p 
behavior. We take X(p) = 8m 3 / (m 2 + ?p 2) for three different values of  y: ( ½, 1, 2 ). A normalization condition 
X ( m ) = m  fixes d. [We note that the ,8:s are invariant under the scaling X(p)=.aX(p /a)] .  We obtain 
ce~= ( -0 .0037 ,  -0 .0044,  -0 .0055)  and c~2= (0.0069, 0.0074, 0.0081 ). We also obtain f J m =  (0.30, 0.28, 
0.27 ) from ( 13 ) ( C =  1 ) to be compared with the Pagels-Stokar formula ( C=  0) which gives f J  m = (0.27, 
0.25, 0.23). m, crudely speaking, is the constituent mass. 

Thus far we have assumed a vanishing current quark mass. A current quark mass may be introduced by adding 
a GB independent mass term to S ;  ~ : 

S~ 1 (x, y) - ~ x d ( X - y )  + X~r(x, y) +mqd(X--y)  . (19) 

For example the two diagrams in fig. 1 now yield a mass term for the GB and to lowest order in mq we obtain 
the standard result 

2 2rnq(¢~v) / f2 ,  (20) 

where ( ~ )  = [ - 4No / (270  4] f d 4 q X ( q ) / [ q 2 + X ( q )  2 ]. We may also introduce gauge fields. The nonlocality 
makes the gauging of our model nontrivial, but we have been able to reproduce for example the Wess-Zumino 
terms with gauge fields. Further implications of current quark masses and gauge fields in our model will be 
considered elsewhere. 

In summary we have considered a nonlocal generalization of the nonlinear sigma model in which GBs appear 
as fluctuations in the order parameter X(p) .  This better represents generic features of chiral symmetry breaking 
in gauge theories. But we find that chiral symmetry alone is insufficient to completely determine the multi-GB 
couplings. And thus the low energy chiral lagrangian has some undetermined dependence on derivatives of 
X(p) .  

Is there some natural way to constrain our model further? We return to the local sigma model with only the 
minimal, nonderivative GB-quark couplings in ( 1 ). That model has the axial current vertex function equal to 
,~ayay5 and it has no tree order vertex functions with multiple axial currents and two quark fields. In our model 
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we have the same axial current vertex funct ion but  we find that it is impossible to arrange for all tree order 
multiple axial current vertex functions to vanish. This may be traced to the nonabel ian nature of the chiral 
symmetry. In the special case of one flavor we may construct a version of our model with U ( 1 )L × U ( 1 ) R chiral 
symmetry. Here it is possible to make all mult iple axial current vertex functions vanish. And this constraint  
turns out to specify X,(x, y) uniquely. It yields C = 0  in the formula forf~ since in this case the pion dependent  
term in the axial current vanishes, unlike the nonabel ian  case. In the nonabel ian case the best we can do is to 
require the vanishing of vertex functions in which all axial currents have commuting generators. This also deter- 
mines S~ (x, y) ;  implications (which include C =  0) will be considered elsewhere. 

We thank B. Bardeen, M. Sutherland, and E. Swanson for useful discussions. This research was supported in 
part by the Natural  Sciences and Engineering Research Council  of Canada. 
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